

Vanderbilt University

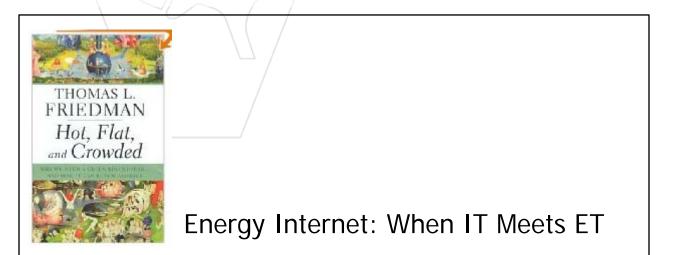
Crosscutting CPS Needs in Industry

Janos Sztipanovits ISIS, Vanderbilt University

"Transportation CPS Workshop" November 19, 2008 Vienna, Virginia 22182

- A crosscutting CPS need in industry: System Integration
- Nature and scope of challenges
- Elements of a Science of System Integration

Trends in Vehicles...


Sectors	Goals		
Aerospace	 Aircraft that fly faster and further on less energy. Air traffic control systems that make more efficient use of airspace. 		
Automotive	 Automobiles that are more capable and safer but use less energy. Highways that are safe, higher throughput and energy efficient. 	LEVERASSERVERT LAT.FAREL LORTACIONES STELLINE GALARISOS STELLINE GALAR	
Defense	 More capable defense systems Better use of networked fleets of autonomous vehicles Integrated, maneuverable, coordinated, energy efficient Resilient to cyber attacks 		

... or in a Broader Sense

Sectors	Goal	S	
Aerospace	 Aircraft that fly faster and further on less energy. Air traffic control systems that make more efficient use of airspace. 		
Automotive	 Automobiles that are more capable and safer but use less energy. Highways that are safe, higher throughput and energy efficient. 		
Defense	 More capable defense systems Better use of networked fleets of autonomous vehicles Integrated, maneuverable, coordinated, energy efficient. Resilient to cyber attacks 		$\frac{1}{2}$

- Networking and Information Technology (NIT) have been increasingly used as *universal system integrator* in human – scale and societal – scale systems
- Functionality and salient system characteristics emerge through the interaction of *networked physical and computational objects*

Engineered systems turn into Cyber-Physical Systems (CPS)

NIT delivers unique precision and flexibility in interaction and coordination

Cyber

- Rich time models
- Precise interactions across highly extended spatial/temporal dimension
- Flexible, dynamic communication mechanisms
- Precise time-variant, nonlinear behavior
- Introspection, learning, reasoning

Integrated CPS

- Elaborate coordination of physical processes
- Hugely increased system size with controllable, stable behavior
- Dynamic, adaptive architectures
- Adaptive, autonomic systems
- Self monitoring, self-healing system architectures and better safety/security guarantees.

Is the Integration Role Crosscutting?

The share of value of embedded computing/networking <u>components in different industries:</u>

	2003	2009
 Automotive 	52%	56%
 Avionics/Aerospace 	52%	54%
Health/Medical equipment	50%	52%
 Industrial automation 	43%	48%
 Telecommunications 	56%	58%
 Consumer electronics and Intelligent Homes 	60%	62%

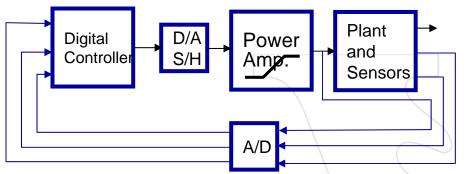
The shift from federated to integrated architectures is a shared trend.

Source: "Study of Worldwide Trends and R&D Programm*es* in Embedded Systems in View of Maximising the Impact of a Technology Platform in the Area" EU Commission, 2005 7

- A crosscutting CPS need in industry: System Integration
- Nature and scope of challenges
- Elements of a Science of System Integration

Across each design concerns (functional, safety/security, physical platform):

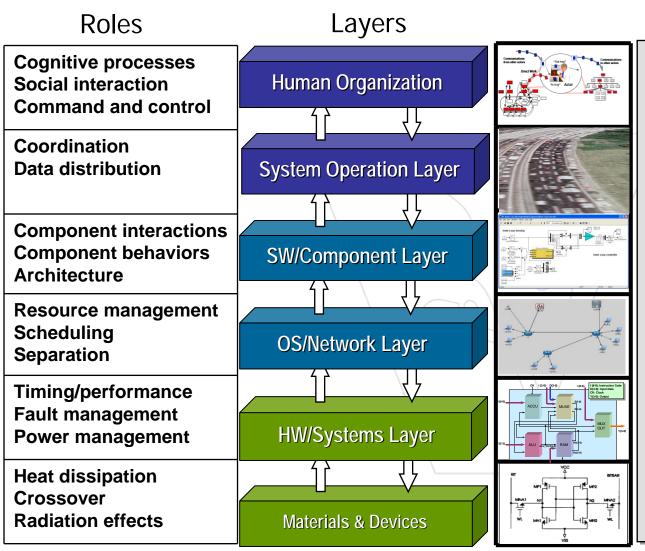
Components


Layers

System of Systems

Functional: E.g.: Dynamics

Component Integration Platform (e.g. SL/SF)

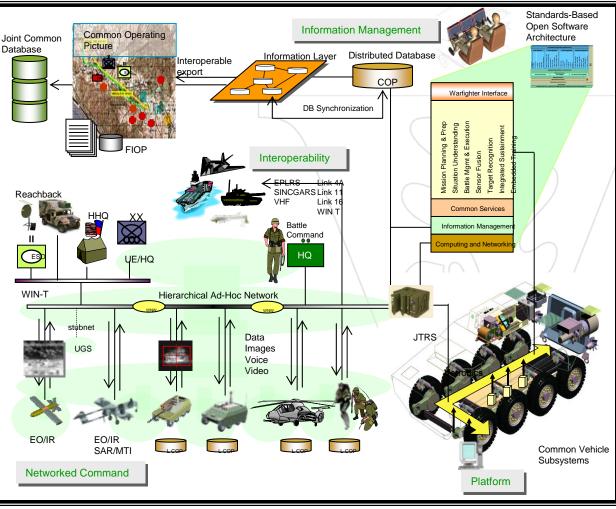

Software: E.g. Timing

Comp-1
$$\longrightarrow$$
 Comp-2 \longrightarrow Comp-3

Component Integration Platform (e.g. TTP)

- Composability and compositionality are key concepts
- Defined for carefully selected properties (dynamics, latency, power,..)
- Decomposed into *structure*, *interaction* and *behavior*
- Challenges:
 - composition frameworks that guarantee essential properties
 - Heterogeneous composition

Multi-Layer System Integration



Characteristics

- Inter-layer interactions
- Effects propagate across the layers
- Efficiency and optimization drives toward intractability
- Inter-layer relationship:
 - mapping
 - refinement
 - synthesis
- Challenges:
 - modeling,
 - constraining
 - composing

System of System Integration

Future Military Systems in the Field

- Heterogeneous CPS
- Open Dynamic Architecture
 - heterogeneous networking
 - heterogeneous components
- Very high level concurrency with complex interactions
- Challenges:
 understanding and
 - predicting behavior

- All integration dimensions are present
- Systems are evolving along "spiral-outs"
- New technical challenges are emerging and potential solutions need to be rapidly explored
- All layers of the system are subject to modifications, there are no well defined synchronization points in the development process
- Integration is inherently incremental; deployed systems need to be integrated with components on different level of maturity: prototypical and with simulated systems/components.

Systems are integrated when all components are delivered

- Acquisition pushes in this direction

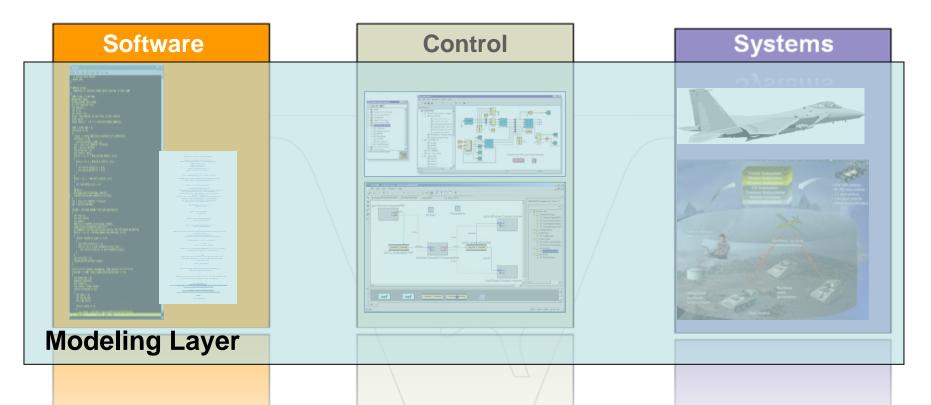
- Integration means: "Make it working somehow"
- System Integration Labs do not offer support for spiral development

– Neither acquisition practices

There is no approach to deal with incomplete specifications and components

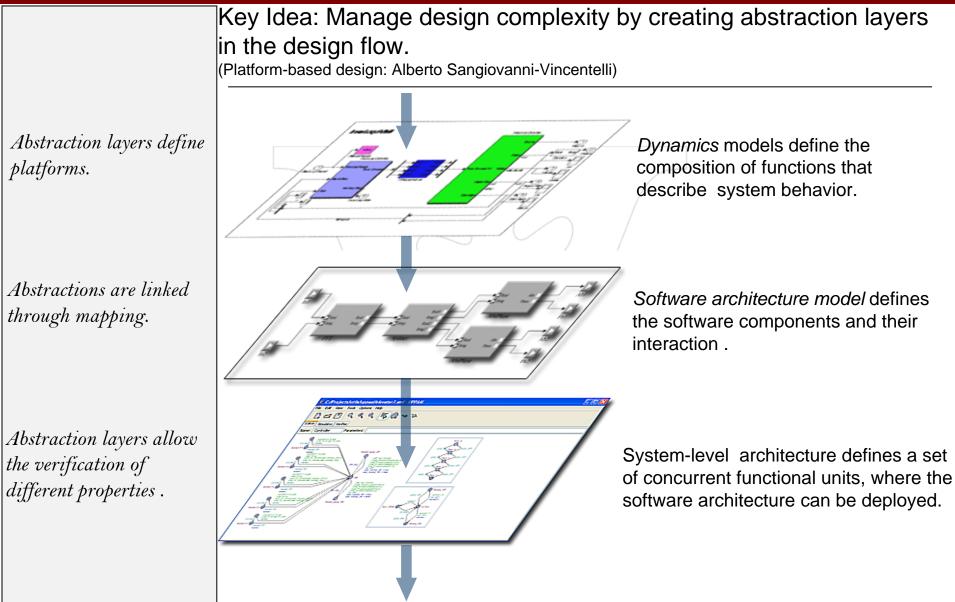
System Integration is the highest risk, most expensive, least predictable step in CPS design

- A crosscutting CPS need in industry: System Integration
- Nature and scope of challenges
- Elements of a Science of System Integration


Components

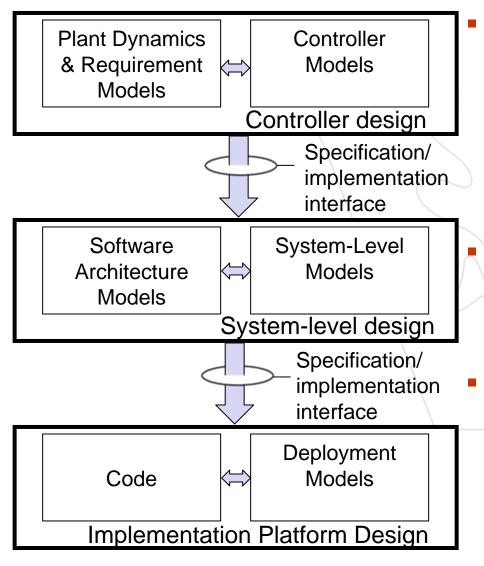
- Model-based design
 - Foundation for convergence across disciplines
- Composition theories for heterogeneous systems
 - Decoupling
 - Orthogonalization
- Agile System Integration
 - Extensive use of modeling and model evolution
 - Multi-model simulation

Convergence: Model-Based Design



- Systems Engineering: Model-based design has been the state of practice
- Control Engineering: Wide acceptance due to popular tools like MathWorks Simulink/StateFlow
- Software Engineering: Increasing acceptance due to OMG's MDA push and wider availability of tool suites

Model-Based Design & Platforms



Composition in Heterogeneous Systems

How to achieve composability and compositionality?

Orthogonality among the design layers

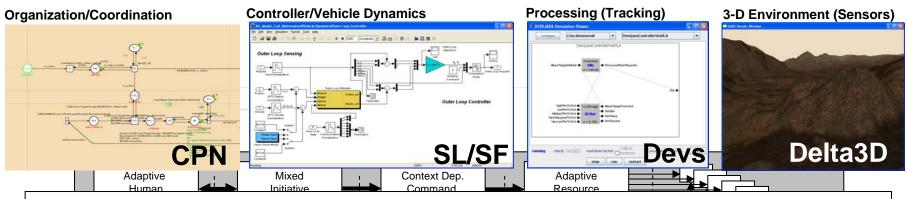
- Controller design depends on assumptions about implementation
- Orthogonalization removes assumptions
 - E.g. Passivity

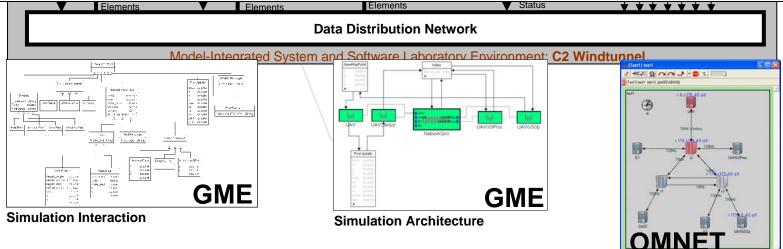
Decoupling across design layers

- E.g., Time Triggered Architecture
- Timing specification drives execution
- Static structure

Fundamental change in design flows

- Cross- layer abstractions
- New specification/implementation interface
- Redefining testing and verification


Agile System Integration...


Agile tools and processes for:

- Rapid modeling of Components and Systems
- Rapid synthesis of adapters and wrappers to integrate systems and components at three levels of fidelity
 - deployed, fully qualified
 - experimental prototype
 - simulated
- Rapid configuration of experiments
 - deployment of services,
 - configuration of environment simulators,
 - config of instrumentation
- Rapid experimental runs
 - control launch, run, post run data collection
 - virtualization of experimental platforms to enable large-scale experiments
- Analysis
 - mapping results back to requirements
- Iterate

Multi-Model Simulation Integration

How can we integrate the models? How can we integrate the simulated heterogeneous system components? How can we integrate the simulation engines?

Network Architecture

Benefits

Challenges	Model-Based Design	Composition Theories	Agile System Integration
All integration dimensions are present	✓	\checkmark	
The system is evolving along "spiral-outs"		\checkmark	\checkmark
New technical challenges are emerging and potential solutions need to be rapidly explored			\checkmark
All layers of the system are subject to modifications, there are no well defined synchronization points in the development process		✓	✓
Integration is inherently incremental; deployed systems need to be integrated with components on different level of maturity: prototypical and with simulated systems/components		✓	\checkmark

- CPS-s represent the "center of gravity" in NIT applications in the future
- System Integration for CPS is a crosscutting CPS need
- An important challenge: Science of System Integration